

Python trio-util documentation

nursery utilities

The following utilities are intended to avoid nursery boilerplate in some
simple cases.

wait_any() and wait_all() are used to simultaneously
run async functions which either have side effects and don’t return a
value, or signal merely by exiting. For example, given two trio.Event
objects a and b, we can wait until either event is true:

await wait_any(a.wait, b.wait)

or wait until both events are true:

await wait_all(a.wait, b.wait)

	
async trio_util.wait_any(*args)

	Wait until any of the given async functions are completed.

Equivalent to creating a new nursery and calling start_soon() on
each async function, where the first function to return will cause the
nursery to be cancelled.

If the function invocations require arguments, use partial():

await wait_any(partial(foo, 'hello'),
 partial(bar, debug=True))

	
async trio_util.wait_all(*args)

	Wait until all of the given async functions are completed.

Equivalent to creating a new nursery and calling start_soon() on
each async function.

NOTE: Be careful when using this with a function that returns when
some non-permanent condition is satisfied (e.g. AsyncBool.wait_value).
While waiting for the other async function to complete, the state which
satisfied the condition may change.

value wrappers

AsyncValue can wrap any type, offering the ability to wait for a
specific value or transition. AsyncBool is just an AsyncValue
that defaults to False.

	
class trio_util.AsyncValue(value)

	Value wrapper offering the ability to wait for a value or transition.

Synopsis:

>>> a = AsyncValue(0) # NOTE: can wrap any type (enum, tuple, ...)
>>> ...
>>> a.value = 5 # access underlying value
>>> ...
>>> # wait for value match by equality
>>> await a.wait_value(7)
>>> ...
>>> # wait for value match by predicate
>>> await a.wait_value(lambda v: v > 10)
>>> ...
>>> # wait for transition by equality
>>> await a.wait_transition(14)
>>> ...
>>> # wait for transition by predicate (default: any transition)
>>> await a.wait_transition(lambda v, old: v > 10 and old < 0)

When using wait_value() and wait_transition(), note that the value may
have changed again before the caller receives control.

Performance note: assignment to the value property has O(N) complexity,
where N is the number of active wait predicates.

	
property value

	The wrapped value

	
async wait_value(value_or_predicate, *, held_for=0)

	Wait until given predicate f(value) is True.

The predicate is tested immediately and, if false, whenever
the value property changes.

If a non-callable is provided, it’s equivalent to a predicate matching
the given value.

If held_for > 0, the predicate must match for that duration from the
time of the call. “held” means that the predicate is continuously true.

returns value which satisfied the predicate
(when held_for > 0, it’s the most recent value)

	
async wait_transition(value_or_predicate=<function _ANY_TRANSITION>)

	Wait until given predicate f(value, old_value) is True.

The predicate is tested whenever the value property changes.
The default predicate responds to any value change.

If a non-callable is provided, it’s equivalent to a predicate matching
the given value.

returns (value, old_value) which satisfied the predicate

	
class trio_util.AsyncBool(value=False)

	Boolean wrapper offering the ability to wait for a value or transition.

Synopsis:

>>> a = AsyncBool()
>>> ...
>>> a.value = True # access underlying value
>>> ...
>>> await a.wait_value(False) # wait for a specific value
>>> ...
>>> await a.wait_transition() # wait for a transition (default: any)

When using wait_value() and wait_transition(), note that the value may
have changed again before the caller receives control.

Other than the constructor value defaulting to False, this class is the
same as AsyncValue.

Sometimes you want to wait on a condition involving multiple async values.
This can be achieved without resorting to polling by employing the
compose_values() context manager.

	
trio_util.compose_values(**value_map)

	Async context manager providing a composite of multiple AsyncValues

The composite object itself is an AsyncValue, with the value of each
underlying object accessible as attributes on the composite value.

compose_values() expects named AsyncValue instances to be provided as
keyword arguments. The attributes of the composite value will correspond
to the given names.

It’s mostly an implementation detail, but the composite value type is a
namedtuple. Users should not write to the composite value attribute
since it is exclusively managed by the context.

	Synopsis:
	>>> async_x, async_y = AsyncValue(-1), AsyncValue(10)
>>>
>>> async with compose_values(x=async_x, y=async_y) as async_xy:
>>> result = await async_xy.wait_value(lambda val: val.x < 0 < val.y))
>>>
>>> result
CompositeValue(x=-1, y=10)

collections

AsyncDictionary has many uses, such as multiplexing a networking
connection among tasks.

	
class trio_util.AsyncDictionary(*args, **kwargs)

	Bases: collections.abc.MutableMapping, typing.Generic

MutableMapping with waitable get and pop.

TODO: exception support using outcome package

	
async get_wait(key: KT) → VT

	Return value of given key, blocking until populated.

	
async pop_wait(key: KT) → VT

	Remove key and return its value, blocking until populated.

	
is_waiting(key: KT) → bool

	Return True if there is a task waiting for key.

repeated events

trio.Event does not offer a clear() method, so it can’t be
triggered multiple times. It’s for your own good.

The following are event classes which can be triggered repeatedly in a
relatively safe manner. This is achieved by allowing only one listener
and automatically clearing the event after it’s received.

	
class trio_util.UnqueuedRepeatedEvent

	An unqueued repeated event.

A repeated event may be triggered multiple times, and has only one
listener. A call to set() is ignored if the listener is still processing
the previous event (or there is no listener), and won’t be queued.

>>> event = UnqueuedRepeatedEvent()

One task runs a listening loop, waiting for set():

>>> async for _ in event:
>>> # do blocking work
>>> await trio.sleep(1)

Another task triggers events:

>>> event.set() # trigger event
>>> trio.sleep(0) # event processing starts
>>> event.set() # ignored, because previous event is still being processed
>>> trio.sleep(2)
>>> event.set() # trigger event

	
set()

	Trigger event if there is a waiting listener.

	
class trio_util.MailboxRepeatedEvent

	A repeated event which queues up to one set() call.

A repeated event may be triggered multiple times, and has only one
listener. Up to one set() call may be queued if the listener is
still processing the previous event.

It’s often used for signaling that an out-of-band data location has
changed (hence the name “mailbox”). If the data is a collection type
(list, etc.) it’s safe to use this class, but other types of data are
subject to overrun.

AVOID USING THIS CLASS FOR NON-COLLECTION DATA because data changes can
be lost if the listener does not keep up. Consider using a queue instead
(see trio.open_memory_channel) so that there is back pressure ensuring
that the data is received.

>>> event = MailboxRepeatedEvent()
>>> data = None

One task runs a listening loop, waiting for set():

>>> async for _ in event:
>>> # process data
>>> print(data)
>>> await trio.sleep(1)

Another task triggers iteration:

>>> data = 'foo'
>>> event.set() # trigger event
>>> trio.sleep(0) # event processing starts
>>> data = 'bar'
>>> event.set() # trigger event (queued since previous event is being processed)

	
set()

	Trigger event

Up to one event may be queued if there is no waiting listener (i.e.
no listener, or the listener is still processing the previous event).

generators

	
trio_util.periodic(period)

	Yield (elapsed_time, delta_time) with an interval of period seconds.

For example, to loop indefinitely with a period of 1 second, accounting
for the time taken in the loop itself:

async for _ in periodic(1):
 ...

In the case of overrun, the next iteration begins immediately.

On the first iteration, delta_time will be None.

iterators

	
trio_util.azip(*aiterables)

	async version of izip with parallel iteration

	
trio_util.azip_longest(*aiterables, fillvalue=None)

	async version of izip_longest with parallel iteration

exceptions

	
trio_util.multi_error_defer_to(*privileged_types, propagate_multi_error=True, strict=True)

	Defer a trio.MultiError exception to a single, privileged exception

In the scope of this context manager, a raised MultiError will be coalesced
into a single exception with the highest privilege if the following
criteria is met:

	every exception in the MultiError is an instance of one of the given
privileged types

additionally, by default with strict=True:

	there is a single candidate at the highest privilege after grouping
the exceptions by repr(). For example, this test fails if both
ValueError(‘foo’) and ValueError(‘bar’) are the most privileged.

If the criteria are not met, by default the original MultiError is
propagated. Use propagate_multi_error=False to instead raise a
RuntimeError in these cases.

Examples:

multi_error_defer_to(trio.Cancelled, MyException)
 MultiError([Cancelled(), MyException()]) -> Cancelled()
 MultiError([Cancelled(), MyException(),
 MultiError([Cancelled(), Cancelled())]]) -> Cancelled()
 MultiError([Cancelled(), MyException(), ValueError()]) -> *no change*
 MultiError([MyException('foo'), MyException('foo')]) -> MyException('foo')
 MultiError([MyException('foo'), MyException('bar')]) -> *no change*

multi_error_defer_to(MyImportantException, trio.Cancelled, MyBaseException)
 # where isinstance(MyDerivedException, MyBaseException)
 # and isinstance(MyImportantException, MyBaseException)
 MultiError([Cancelled(), MyDerivedException()]) -> Cancelled()
 MultiError([MyImportantException(), Cancelled()]) -> MyImportantException()

	Parameters

	
	privileged_types – exception types from highest priority to lowest

	propagate_multi_error – if false, raise a RuntimeError where a
MultiError would otherwise be leaked

	strict – propagate MultiError if there are multiple output exceptions
to chose from (i.e. multiple exceptions objects with differing repr()
are instances of the privileged type). When combined with
propagate_multi_error=False, this case will raise a RuntimeError.

	
trio_util.defer_to_cancelled(*args)

	Context manager which defers MultiError exceptions to Cancelled.

In the scope of this context manager, any raised trio.MultiError exception
which is a combination of the given exception types and trio.Cancelled
will have the exception types filtered, leaving only a Cancelled exception.

The intended use is where routine exceptions (e.g. which are part of an API)
might occur simultaneously with Cancelled (e.g. when using move_on_after()).
Without properly catching and filtering the resulting MultiError, an
unhandled exception will occur. Often what is desired in this case is
for the Cancelled exception alone to propagate to the cancel scope.

Equivalent to multi_error_defer_to(trio.Cancelled, *args).

	Parameters

	args – One or more exception types which will defer to
trio.Cancelled. By default, all exception types will be filtered.

Example:

If MultiError([Cancelled, Obstacle]) occurs, propagate only Cancelled
to the parent cancel scope.
with defer_to_cancelled(Obstacle):
 try:
 # async call which may raise exception as part of API
 await advance(speed)
 except Obstacle:
 # handle API exception (unless Cancelled raised simultaneously)
 ...

miscellaneous

	
class trio_util.TaskStats(current_time=<function current_time>)

	Bases: trio.abc.Instrument

Trio scheduler Instrument which logs various task stats at termination.

Includes max task wait time, slowest task step, and highest task schedule
rate.

Index

 A
 | C
 | D
 | G
 | I
 | M
 | P
 | S
 | T
 | U
 | V
 | W

A

 	
 	AsyncBool (class in trio_util)

 	AsyncDictionary (class in trio_util)

 	
 	AsyncValue (class in trio_util)

 	azip() (in module trio_util)

 	azip_longest() (in module trio_util)

C

 	
 	compose_values() (in module trio_util)

D

 	
 	defer_to_cancelled() (in module trio_util)

G

 	
 	get_wait() (trio_util.AsyncDictionary method)

I

 	
 	is_waiting() (trio_util.AsyncDictionary method)

M

 	
 	MailboxRepeatedEvent (class in trio_util)

 	
 	multi_error_defer_to() (in module trio_util)

P

 	
 	periodic() (in module trio_util)

 	
 	pop_wait() (trio_util.AsyncDictionary method)

S

 	
 	set() (trio_util.MailboxRepeatedEvent method)

 	(trio_util.UnqueuedRepeatedEvent method)

T

 	
 	TaskStats (class in trio_util)

U

 	
 	UnqueuedRepeatedEvent (class in trio_util)

V

 	
 	value() (trio_util.AsyncValue property)

W

 	
 	wait_all() (in module trio_util)

 	wait_any() (in module trio_util)

 	
 	wait_transition() (trio_util.AsyncValue method)

 	wait_value() (trio_util.AsyncValue method)

 nav.xhtml

 Table of Contents

 		
 Python trio-util documentation

_static/file.png

_static/minus.png

_static/plus.png

