
trio-util
Release 0.1.0

Groove X, Inc.

Aug 22, 2019

CONTENTS:

1 nursery utilities 1

2 value wrappers 3

3 collections 5

4 repeated events 7

5 generators 9

6 iterators 11

7 miscellaneous 13

Index 15

i

ii

CHAPTER

ONE

NURSERY UTILITIES

The following utilities are intended to avoid nursery boilerplate in some simple cases.

wait_any() and wait_all() are used to simultaneously run async functions which either have side effects and
don’t return a value, or signal merely by exiting. For example, given two trio.Event objects a and b, we can wait
until either event is true:

await wait_any(a.wait, b.wait)

or wait until both events are true:

await wait_all(a.wait, b.wait)

async trio_util.wait_any(*args)
Wait until any of the given async functions are completed.

Equivalent to creating a new nursery and calling start_soon() on each async function, where the first function to
return will cause the nursery to be cancelled.

If the function invocations require arguments, use partial():

await wait_any(partial(foo, 'hello'),
partial(bar, debug=True))

async trio_util.wait_all(*args)
Wait until all of the given async functions are completed.

Equivalent to creating a new nursery and calling start_soon() on each async function.

NOTE: Be careful when using this with a function that returns when some non-permanent condition is satisfied
(e.g. AsyncBool.wait_value). While waiting for the other async function to complete, the state which satisfied
the condition may change.

1

trio-util, Release 0.1.0

2 Chapter 1. nursery utilities

CHAPTER

TWO

VALUE WRAPPERS

These value wrappers offer the ability to wait for a specific value or transition. AsyncValue can wrap any type,
while AsyncBool offers a simplified API for the common case of bool values.

class trio_util.AsyncValue(value)
Value wrapper offering the ability to wait for a value or transition.

Synopsis:

>>> a = AsyncValue(0) # NOTE: can wrap any type (enum, tuple, ...)
>>> ...
>>> a.value = 5 # access underlying value
>>> ...
>>> # wait for value predicate
>>> await a.wait_value(lambda v: v > 10)
>>> ...
>>> # wait for transition predicate (default: any)
>>> await a.wait_transition(lambda v, old: v > 10 and old < 0)

When using wait_value() and wait_transition(), note that the value may have changed again before the caller
receives control.

Performance note: assignment to the value property has O(N) complexity, where N is the number of active wait
predicates.

property value
The wrapped value

async wait_value(predicate)
Wait until given predicate f(value) is True.

The predicate is tested immediately and, if false, whenever the value property changes.

returns value which satisfied the predicate

async wait_transition(predicate=None)
Wait until given predicate f(value, old_value) is True.

The predicate is tested whenever the value property changes. The default is None, which responds to any
value change.

returns (value, old_value) which satisfied the predicate

class trio_util.AsyncBool(value=False)
Boolean wrapper offering the ability to wait for a value or transition.

Synopsis:

3

trio-util, Release 0.1.0

>>> a = AsyncBool()
>>> ...
>>> a.value = True # access underlying value
>>> ...
>>> await a.wait_value(False) # wait for a specific value
>>> ...
>>> await a.wait_transition() # wait for a transition (default: any)

When using wait_value() and wait_transition(), note that the value may have changed again before the caller
receives control.

property value
The wrapped value

async wait_value(value)
Wait until given value.

async wait_transition(value=None)
Wait until transition to given value (default None which means any).

4 Chapter 2. value wrappers

CHAPTER

THREE

COLLECTIONS

AsyncDictionary has many uses, such as multiplexing a networking connection among tasks.

class trio_util.AsyncDictionary(*args, **kwargs)
Bases: collections.abc.MutableMapping, typing.Generic

MutableMapping with waitable get and pop.

TODO: exception support using outcome package

async get_wait(key: KT)→ VT
Return value of given key, blocking until populated.

async pop_wait(key: KT)→ VT
Remove key and return its value, blocking until populated.

is_waiting(key: KT)→ bool
Return True if there is a task waiting for key.

5

trio-util, Release 0.1.0

6 Chapter 3. collections

CHAPTER

FOUR

REPEATED EVENTS

trio.Event does not offer a clear() method, so it can’t be triggered multiple times. It’s for your own good.

The following are event classes which can be triggered repeatedly in a relatively safe manner. This is achieved by
allowing only one listener and automatically clearing the event after it’s received.

class trio_util.UnqueuedRepeatedEvent
An unqueued repeated event.

A repeated event may be triggered multiple times, and has only one listener. A call to set() is ignored if the
listener is still processing the previous event (or there is no listener), and won’t be queued.

>>> event = UnqueuedRepeatedEvent()

One task runs a listening loop, waiting for set():

>>> async for _ in event:
>>> # do blocking work
>>> await trio.sleep(1)

Another task triggers events:

>>> event.set() # trigger event
>>> trio.sleep(0) # event processing starts
>>> event.set() # ignored, because previous event is still being processed
>>> trio.sleep(2)
>>> event.set() # trigger event

set()
Trigger event if there is a waiting listener.

class trio_util.MailboxRepeatedEvent
A repeated event which queues up to one set() call.

A repeated event may be triggered multiple times, and has only one listener. Up to one set() call may be queued
if the listener is still processing the previous event.

It’s often used for signaling that an out-of-band data location has changed (hence the name “mailbox”). If the
data is a collection type (list, etc.) it’s safe to use this class, but other types of data are subject to overrun.

AVOID USING THIS CLASS FOR NON-COLLECTION DATA because data changes can be lost if the listener
does not keep up. Consider using a queue instead (see trio.open_memory_channel) so that there is back pressure
ensuring that the data is received.

>>> event = MailboxRepeatedEvent()
>>> data = None

7

trio-util, Release 0.1.0

One task runs a listening loop, waiting for set():

>>> async for _ in event:
>>> # process data
>>> print(data)
>>> await trio.sleep(1)

Another task triggers iteration:

>>> data = 'foo'
>>> event.set() # trigger event
>>> trio.sleep(0) # event processing starts
>>> data = 'bar'
>>> event.set() # trigger event (queued since previous event is being processed)

set()
Trigger event

Up to one event may be queued if there is no waiting listener (i.e. no listener, or the listener is still
processing the previous event).

8 Chapter 4. repeated events

CHAPTER

FIVE

GENERATORS

trio_util.periodic(period)
Yield (elapsed_time, delta_time) with an interval of period seconds.

For example, to loop indefinitely with a period of 1 second, accounting for the time taken in the loop itself:

async for _ in periodic(1):
...

In the case of overrun, the next iteration begins immediately.

On the first iteration, delta_time will be None.

9

trio-util, Release 0.1.0

10 Chapter 5. generators

CHAPTER

SIX

ITERATORS

trio_util.azip(*aiterables)
async version of izip with parallel iteration

trio_util.azip_longest(*aiterables, fillvalue=None)
async version of izip_longest with parallel iteration

11

trio-util, Release 0.1.0

12 Chapter 6. iterators

CHAPTER

SEVEN

MISCELLANEOUS

class trio_util.TaskStats(current_time=<function current_time>)
Bases: trio.abc.Instrument

Trio scheduler Instrument which logs various task stats at termination.

Includes max task wait time, slowest task step, and highest task schedule rate.

trio_util.defer_to_cancelled(*args)
Context manager which defers MultiError exceptions to Cancelled.

In the scope of this context manager, any raised trio.MultiError exception which is a combination of the given
exception types and trio.Cancelled will have the exception types filtered, leaving only a Cancelled exception.

The intended use is where routine exceptions (e.g. which are part of an API) might occur simultaneously with
Cancelled (e.g. when using move_on_after()). Without properly catching and filtering the resulting MultiError,
an unhandled exception will occur. Often what is desired in this case is for the Cancelled exception alone to
propagate to the cancel scope.

Parameters args – One or more exception types which will defer to trio.Cancelled. By default, all
exception types will be filtered.

Example:

If MultiError([Cancelled, Obstacle]) occurs, propagate only Cancelled
to the parent cancel scope.
with defer_to_cancelled(Obstacle):

try:
async call which may raise exception as part of API
await advance(speed)

except Obstacle:
handle API exception (unless Cancelled raised simultaneously)
...

TODO: Support consolidation of simultaneous user API exceptions (i.e. MultiError without Cancelled).
This would work by prioritized list of exceptions to defer to. E.g. given:

[Cancelled, WheelObstruction, RangeObstruction]

then:

Cancelled + RangeObstruction => Cancelled
WheelObstruction + RangeObstruction => WheelObstruction

13

trio-util, Release 0.1.0

14 Chapter 7. miscellaneous

INDEX

A
AsyncBool (class in trio_util), 3
AsyncDictionary (class in trio_util), 5
AsyncValue (class in trio_util), 3
azip() (in module trio_util), 11
azip_longest() (in module trio_util), 11

D
defer_to_cancelled() (in module trio_util), 13

G
get_wait() (trio_util.AsyncDictionary method), 5

I
is_waiting() (trio_util.AsyncDictionary method), 5

M
MailboxRepeatedEvent (class in trio_util), 7

P
periodic() (in module trio_util), 9
pop_wait() (trio_util.AsyncDictionary method), 5

S
set() (trio_util.MailboxRepeatedEvent method), 8
set() (trio_util.UnqueuedRepeatedEvent method), 7

T
TaskStats (class in trio_util), 13

U
UnqueuedRepeatedEvent (class in trio_util), 7

V
value() (trio_util.AsyncBool property), 4
value() (trio_util.AsyncValue property), 3

W
wait_all() (in module trio_util), 1
wait_any() (in module trio_util), 1
wait_transition() (trio_util.AsyncBool method), 4

wait_transition() (trio_util.AsyncValue method),
3

wait_value() (trio_util.AsyncBool method), 4
wait_value() (trio_util.AsyncValue method), 3

15

	nursery utilities
	value wrappers
	collections
	repeated events
	generators
	iterators
	miscellaneous
	Index

